Machine learning modeling of superconducting critical temperature
نویسندگان
چکیده
منابع مشابه
Machine learning modeling of superconducting critical temperature
Valentin Stanev, 2 Corey Oses, 4 A. Gilad Kusne, 5 Efrain Rodriguez, 2 Johnpierre Paglione, 2 Stefano Curtarolo, 4, 8 and Ichiro Takeuchi 2 Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742-4111, USA Center for Nanophysics and Advanced Materials, University of Maryland, College Park, Maryland 20742, USA Department of Mechanical Engineering and Mater...
متن کاملMachine learning algorithms in air quality modeling
Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...
متن کاملQuantitative Modeling for Prediction of Critical Temperature of Refrigerant Compounds
The quantitative structure-property relationship (QSPR) method is used to develop the correlation between structures of refrigerants (198 compounds) and their critical temperature. Molecular descriptors calculated from structure alone were used to represent molecular structures. A subset of the calculated descriptors selected using a genetic algorithm (GA) was used in the QSPR model development...
متن کاملthe impact of generative learning strategy use on efl learners’ reading achievement and critical thinking
این پژوهش کوشیده است تأثیر به کارگیری راهبردهای زایا را بر پیشرفت و بسندگی در خواندن و درک مطلب و نیز بر تفکر انتقادی زبان آموزان انگلیسی را بررسی کند. در این پژوهش تعداد 46 دانش آموز دختر در مقطع متوسطه اول به صورت تصادفی انتخاب وبه دو گروه تجربی و شاهد با تعداد دانش آموزان مساوی در هر گروه تقسیم شدند. به هر دو گروه سه داستان کوتاه به عنوان موضوع خواندن برای کلاس داده شد. به گروه تجربی درابتدا...
Sns Superconducting Cavity Modeling -iterative Learning Control
The SNS SRF system is operated with a pulsed beam. For the SRF system to track the repetitive reference trajectory, a feedback and a feedforward controllers has been proposed. The feedback controller is to guarantee the closed loop system stability and the feedforward controller is to improve the tracking performance for the repetitive reference trajectory and to suppress the repetitive disturb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: npj Computational Materials
سال: 2018
ISSN: 2057-3960
DOI: 10.1038/s41524-018-0085-8